"Amyloidosis, update

Nelson Leung
Professor of Medicine
Division of Nephrology and Hypertension
Division of Hematology

Disclosure

Advisory Board

BTG

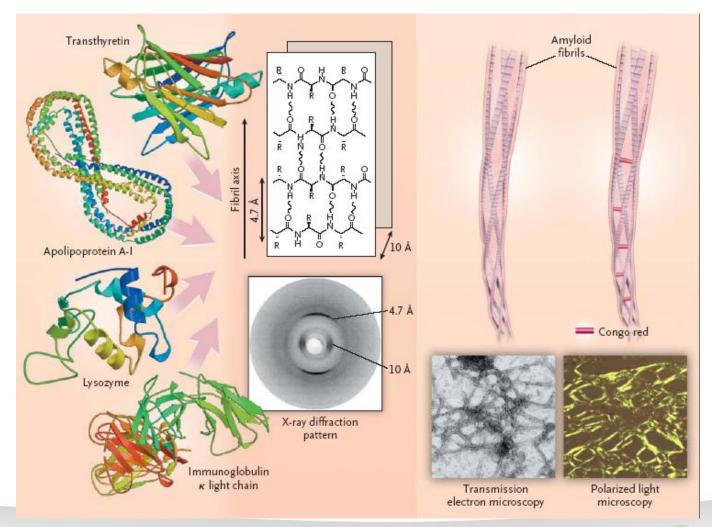
Aduro

Takeda

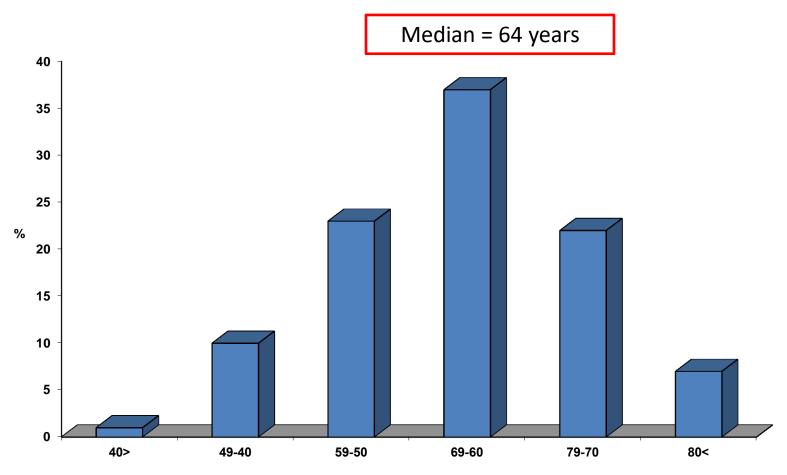
Research Grant

Omeros

Alnylam

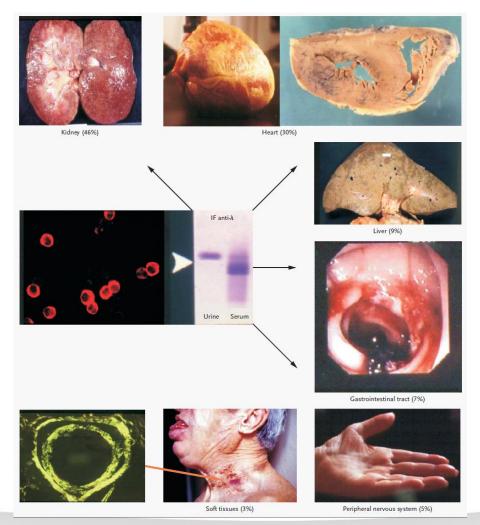


Amyloidosis

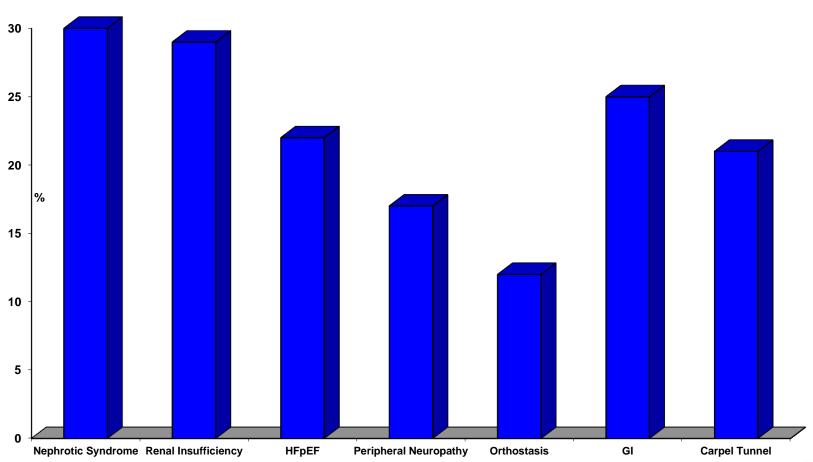


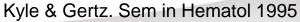
Age Distribution of AL Patients

Kyle & Gertz. Sem in Hematol 1995



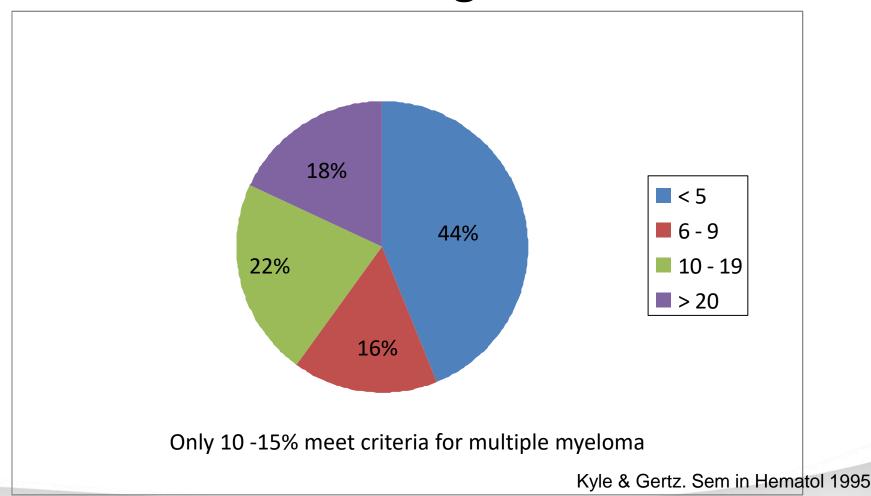
AL amyloidosis is a systemic disease



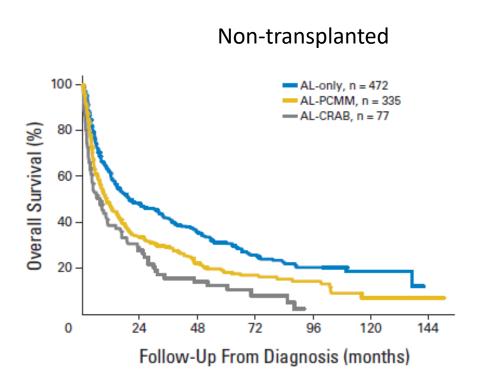


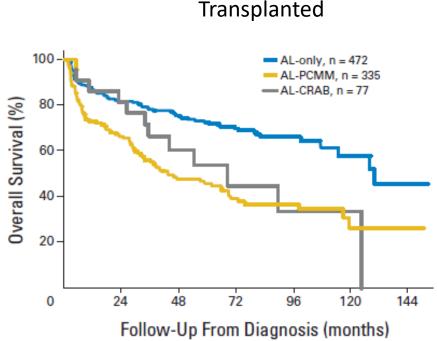
Syndromes at Diagnosis

Most common presenting symptoms



Percentage of Bone Marrow Plasma Cells at Diagnosis



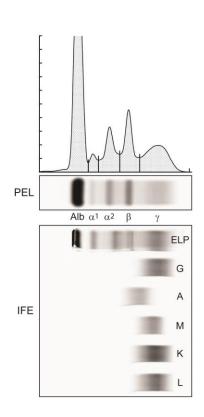


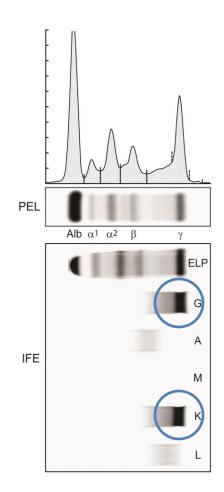
Overall Survival based on PC percentages and CRAB with or without ASCT

Kourelis et al. JCO 2013

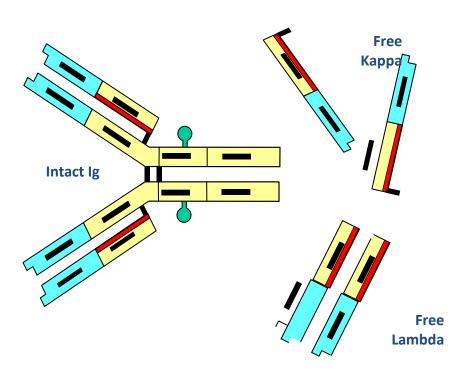
Diagnostics

- 1. Serum free light chain test
- 2. Amyloid typing by mass spectrometry
- 3. Imaging studies
- 4. Monoclonal protein testing by mass spectrometry





Immunofixation



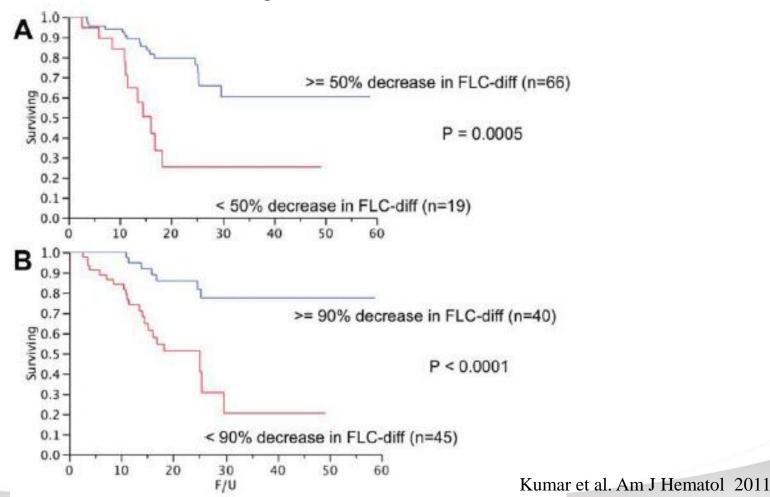
Free Light Chain Assay

- Targets unexposed domains of light chains
 - Immunonephelometry•
 - Automated•
 - Does not distinguish clonality•

Comparison of sFLC assay to Serum and Urine IFE

	n	All 5 tests	Serum PEL and IFE; urine IFE	Serum PEL, IFE, and FLC	Serum PEL and FLC	Serum IFE	Serum PEL	Serum FLC
Diagnosis, %								
All		98.6	97.0	97.4	94.3	87.0	79.0	74.3
MM		100.0	98.7	100.0	100.0	94.4	87.6	96.8
Macroglobulinemia		100.0	100.0	100.0	100.0	100.0	100.0	73.1
SMM		100.0	100.0	100.0	99.5	98.4	94.2	81.2
MGUS		100.0	100.0	97.1	88.7	92.8	81.9	42.4
Plasmacytoma		89.7	89.7	89.7	86.2	72.4	72.4	55.2
POEMS		96.8	96.8	96.8	74.2	96.8	74.2	9.7
Extramedullary plasmacytoma		20.0	20.0	10.0	10.0	10.0	10.0	10.0
Primary AL		98.1	94.2	97.1	96.2	73.8	65.9	88.3
LCDD		83.3	77.8	77.8	77.8	55.6	55.6	77.8

Katzman et al. Clin Chem 2005

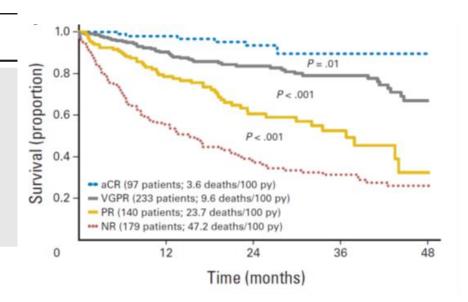


Changes in serum-free light chain rather than intact monoclonal immunoglobulin levels predicts outcome following therapy in primary amyloidosis

New Criteria for Response to Treatment in Immunoglobulin Light Chain Amyloidosis Based on Free Light Chain Measurement and Cardiac Biomarkers: Impact on Survival Outcomes

Giovanni Palladini, Angela Dispenzieri, Morie A. Gertz, Shaji Kumar, Ashutosh Wechalekar, Philip N. Hawkins, Stefan Schönland, Ute Hegenbart, Raymond Comenzo, Efstathios Kastritis, Meletios A. Dimopoulos, Arnaud Jaccard, Catherine Klersy, and Giampaolo Merlini

Criteria


Hematologic responset

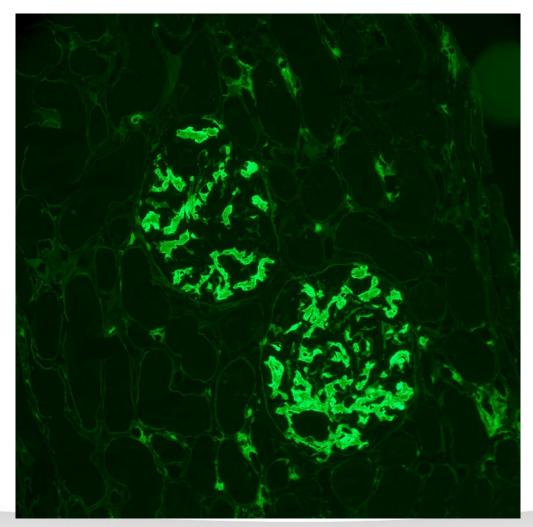
aCR (negative serum and urine immunofixation and normal FLC ratio)

VGPR (dFLC < 40 mg/L)

PR (dFLC decrease > 50%)

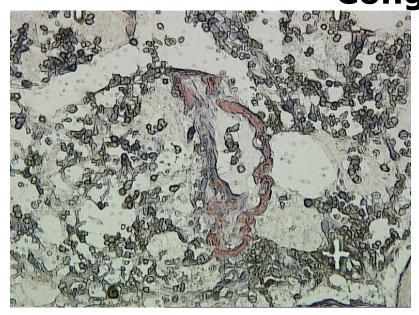
NR

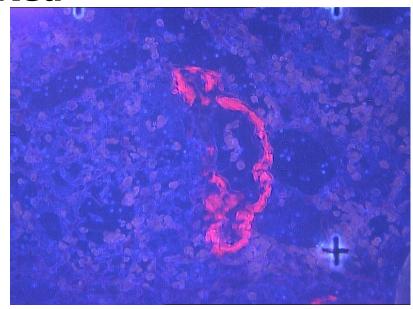
Palladini et al . J Clin Oncol. 2012



immunofluorescence

lambda



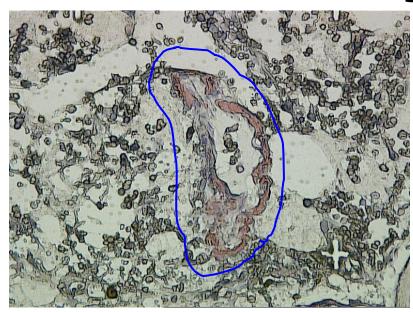


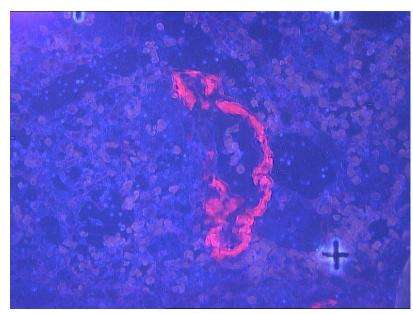
Step 1: Histological examination on FFPE tissues identifies amyloid denosits

deposits Congo Red

Bright field

Fluoro





Step 2a: Trace around amyloid deposits

Congo Red

Bright field

Fluoro

Step 2b: Laser cuts out amyloid deposits

Step 2c: Tissue drops into microfuge cap for trypsin digestion

Proteomics detection of the Ig variable region

	Probability Legend:				
	over 95%				
	80% to 94%				
	50% to 79%		1.	25	, n
	20% to 49%				
	0% to 19%				
Bio View:	Blank	Sample	Sample	Sample	
# 👸 Identified Proteins (402/406)			l 0g	Ŋ	l &
1 🌟 Serum amyloid P-component			2	6	23
2 🌟 Ig lambda (9	12	- 5	
3 🌟 Apolipopro		- 7	4	10	
4 🜟 Ig lambda chain Y-YI region EB4				3	5
5 😭 Hemoglobii	১ 😭 Hemoglobin subunit beta				42
1					

		Probability Legend:						1
		over 95%						ı
		80% to 94%						ı
		50% to 79%						ı
		20% to 49%						ı
		0% to 19%			-	2	<u>س</u>	ı
	Bio View:			ૂ	ample	ample	Sample	ı
#	# $\frac{\mathcal{B}}{\mathcal{B}}$ Identified Proteins (401/403)				, ja	يق	, jo	L
1	🛊 Ig Lambda	Variable Region VI L	ocus 16a		22	27	51	
2	2 🖈 Serum amyloid P-component				2	4	23	I
3	3 🌟 Ig Lambda Constant Region 2 J00253				7	11	8	1
4	* Apolipopro		6	4	10	Ī		
5	🏠 Hemoglobi		30	54	43			

Variable region

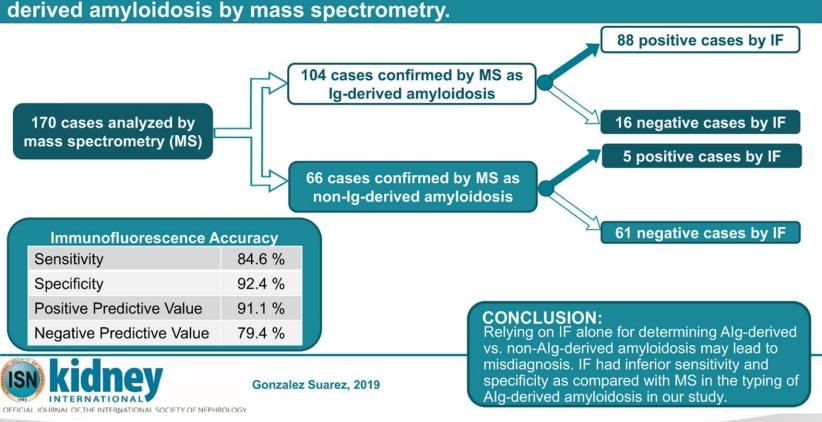
Brief report

Classification of amyloidosis by laser microdissection and mass spectrometry–based proteomic analysis in clinical biopsy specimens

Julie A. Vrana, 1 Jeffrey D. Gamez, 1 Benjamin J. Madden, 2 Jason D. Theis, 1 H. Robert Bergen III, 2 and Ahmet Dogan 1

Department of Laboratory Medicine and Pathology, and 2Mayo Proteomics Research Center, Mayo Clinic, Rochester, MN

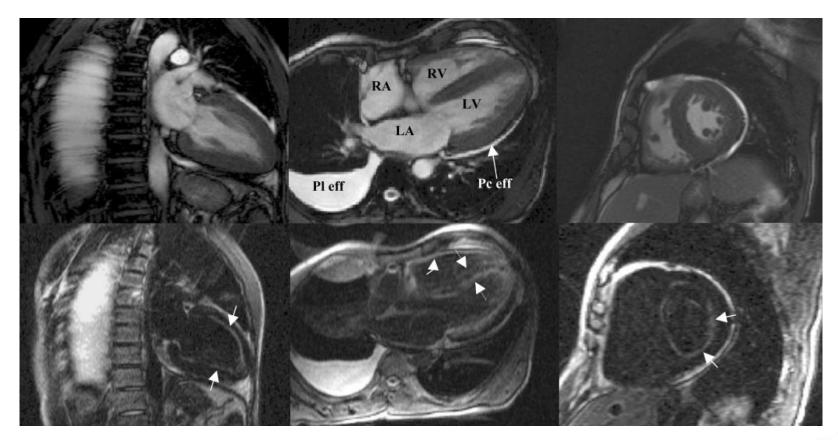
Case	Tissue	Original	MS		MS Analysis		
			Diagnosis	TTR		IGL	IGK
1	BM		AL-IGK				
2	Lung BM	AL-IGK	AL-IGK AL-IGK				
3	Brain	AL-IGK	AL-IGK AL-IGK				
5	Breast		AL-IGK				
6	Liver		AL-IGL				
7	Heart		AL-IGL				
8	Intestine Liver		AL-IGL				
10	Heart		AL-IGL AL-IGL			_	
11	BM		AL-IGL				
12	Brain		AL-IGL				
13	Brain		AL-IGL				
14 15	Heart		AL-IGL				
16	Lung BM	AL-IGL	AL-IGL AL-IGL				
17	Omentum		AL-IGL				
18	Lymph node		AL-IGL				
19	Lung		AL-IGL				
20 21	Lung Liver		AL-IGL AL-IGL				
22	Bone		AL-IGL AL-IGL			-	
23	Lung		AL-IGL				
24	Omentum		AL-IGL				
25	Lymph node		AL-IGL				
26 27	BM Intestine		AA AA				
28	Intestine BM		AA AA		_		
29	BM		AA				
30	Heart	AA	AA				
31	Kidney		AA				
32 33	Kidney Kidney		AA AA				
34	Heart		AA		_		
35	Heart		ATTR				
36	Heart		ATTR		i	i	
37	Heart		ATTR		ĺ	i	
38	Heart		ATTR		i	i	
39	Heart		ATTR		i	i	
40	Heart		ATTR		ĺ	i	
41	Heart		ATTR			i	
42	Heart		ATTR			i	
43	Intestine	ATTR	ATTR			i	
44	Intestine		ATTR			:	
45			ATTR			:	
	Lung					!	
46	Heart		ATTR			!	
47	Heart		ATTR			!	
48	Intestine		ATTR		l	!	
49	Heart		ATTR		l	ļ	
50	Heart		ATTR				
Heat ma microdis	p for average n	umber of total n	umber of peptide	spedra	identified	for each	
0	1	2-4	5-7	8-10	11-1	3	>13
<u> </u>							



The sensitivity and specificity of the routine kidney biopsy immunofluorescence panel are inferior to diagnosing renal immunoglobulin-derived amyloidosis by mass spectrometry

The sensitivity and specificity of the routine kidney biopsy immunofluorescence panel is inferior to diagnosing renal immunoglobulinderived amyloidosis by mass spectrometry.

Gonzalez Suarez et al. Kidney Int 2019





Cardiac MRI in AL amyloidosis

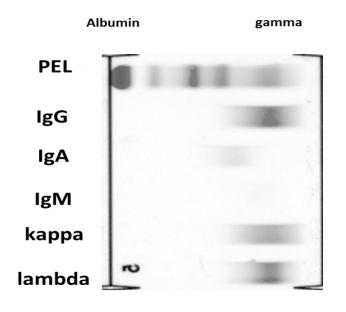
enhencement

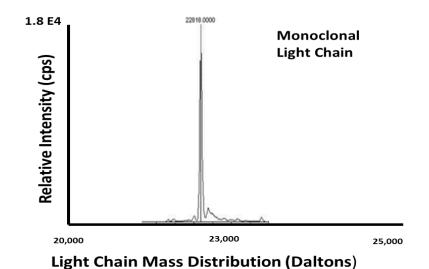
nulling



SAP scintigraphy for AL amyloidosis

Wechalekar et al. Blood 2007





Mass Spectrometry Protein Electrophoresis

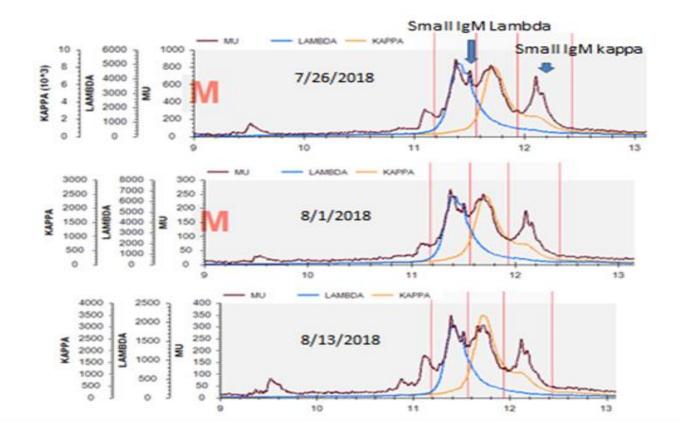
Immunofixation Electrophoresis

Murray et al. The XIVth International Symposium on Amyloidosis 2014

Single IgG kappa Patient over 7 years

Sample Date	M- spike (g/dL)	IFE	FLC ratio	miRAM M	Mass (Da)	miRAM M Peak Area
2/23/2005	4.8	Pos	Inc.	Pos	2345 3	3,010,90
3/292006	0.26	Pos	Inc.	Pos	2345 2	34,839
4/26/2007	0	Neg	NmI	Pos	2345 2	9,300
10/11/2007	0	Neg	NmI	Pos	2345 2	11,500
4/23/2008	0.54	Pos	Inc	Pos	2345 2	152,021
5/7/2009	0.43	Pos	Inc.	Pos	2345 2	322,400
7/27/2010	3.24	Pos	Inc.	Pos	2345 2	2,875,10 0
8/22/2011	0	Neg	NmI	Pos	2345 2	2100
3/5/2012	0.79	Pos	Inc.	Pos	2345 2	600,300

Murray et al. The XIVth International Symposium on Amyloidosis 2014



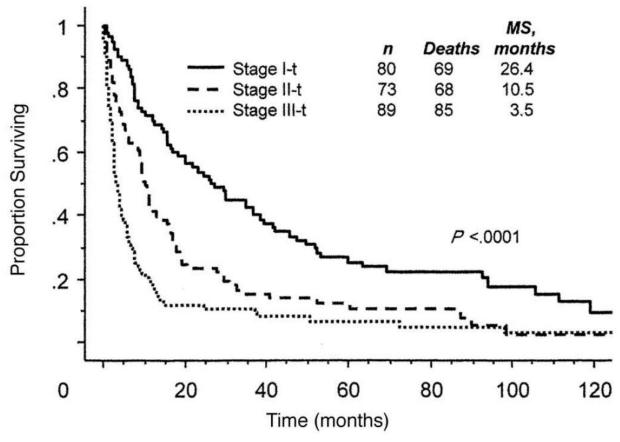
Detecting very small monoclonal proteins negative on immunofixation

Prognosis

Staging systems

Amyloid staging system

Renal staging system

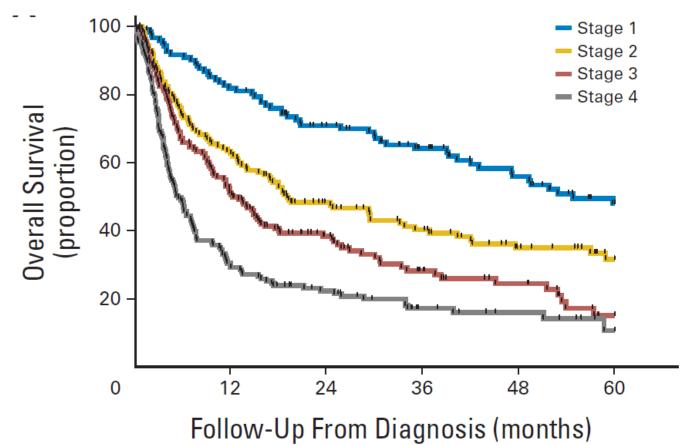


Serum Cardiac Troponins and N-Terminal Pro-Brain Natriuretic Peptide: A Staging System for Primary Systemic Amyloidosis

Angela Dispenzieri, Morie A. Gertz, Robert A. Kyle, Martha Q. Lacy, Mary F. Burritt, Terry M. Therneau, Philip R. Greipp, Thomas E. Witzig, John A. Lust, S. Vincent Rajkumar, Rafael Fonseca, Steven R. Zeldenrust, Christopher G.A. McGregor, and Allan S. Jaffe

cTnT < 0.035 and NTproBNP < 332

Dispenzieri et al. JCO 2004

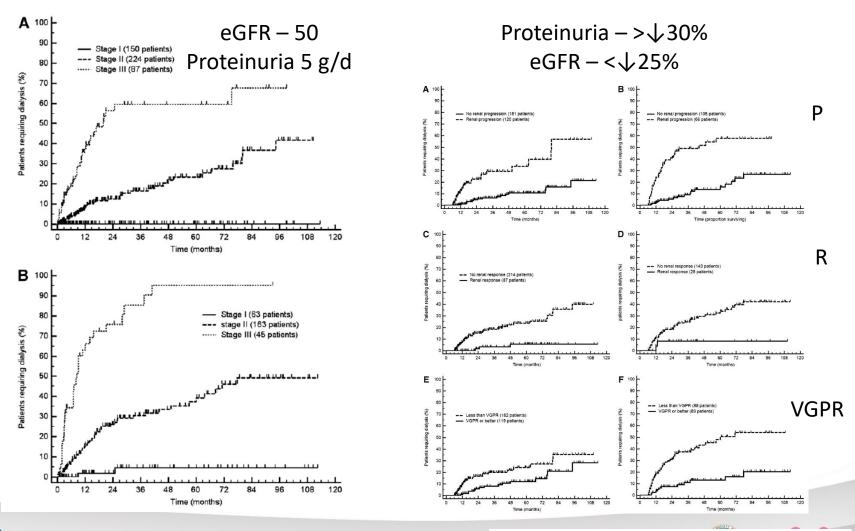


Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements

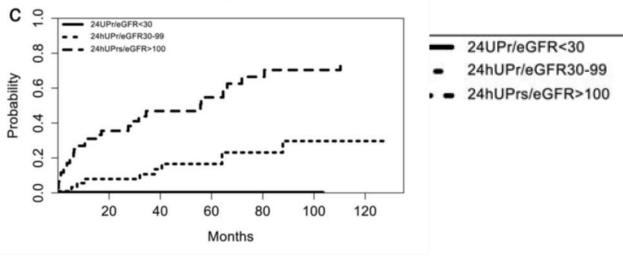
Shaji Kumar, Angela Dispenzieri, Martha Q. Lacy, Suzanne R. Hayman, Francis K. Buadi, Colin Colby, Kristina Laumann, Steve R. Zeldenrust, Nelson Leung, David Dingli, Philip R. Greipp, John A. Lust, Stephen J. Russell, Robert A. Kyle, S. Vincent Rajkumar, and Morie A. Gertz

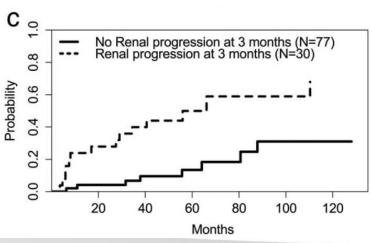
cTnT < 0.025, NTproBNP < 1800, dFLC < 18 mg/dL

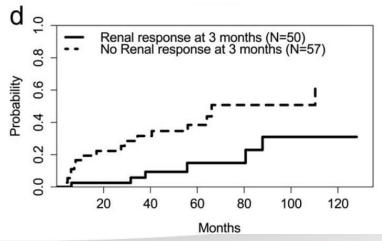
Kumar et al. JCO 2012



A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis


Giovanni Palladini, Ute Hegenbart, Paolo Milani, Christoph Kimmich, Andrea Foli, Anthony D. Ho, Marta Vidus Rosin, Riccardo Albertini, Remigio Moratti, Giampaolo Merlini and Stefan Schönland

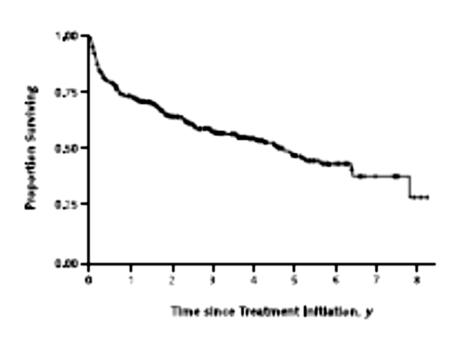


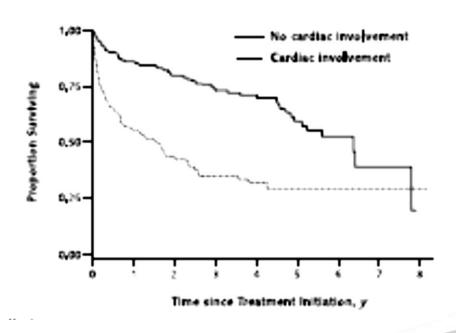


Renal outcomes in patients with AL amyloidosis: Prognostic factors, renal response and the impact of therapy

Treatment

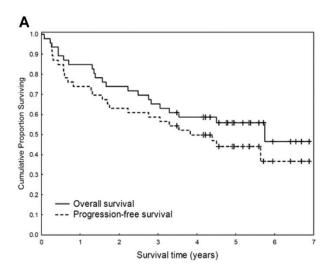
Stem cell transplantation
Melphalan dexamethasone
Bortezomib
Immunomodulatory drugs
Daratumumab

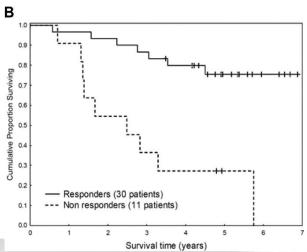




Patient Survival after SCT

Skinner et al. Ann Intern Med 2004; 140: 85-93

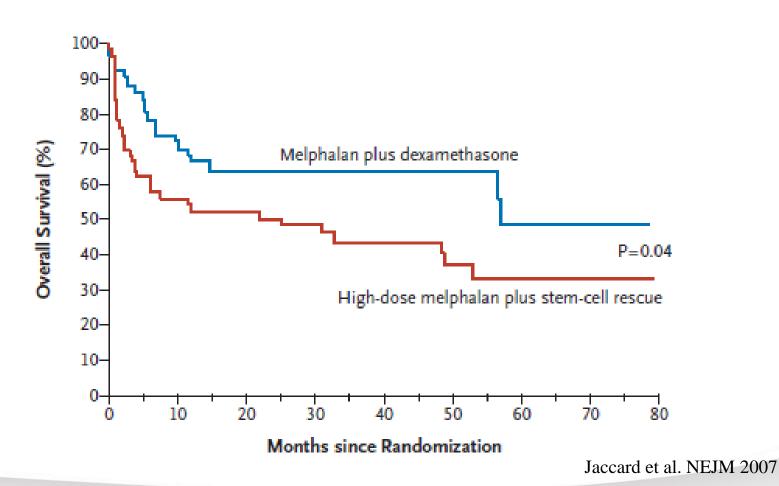




Long Term Follow-up of M-Dex Treated Patients

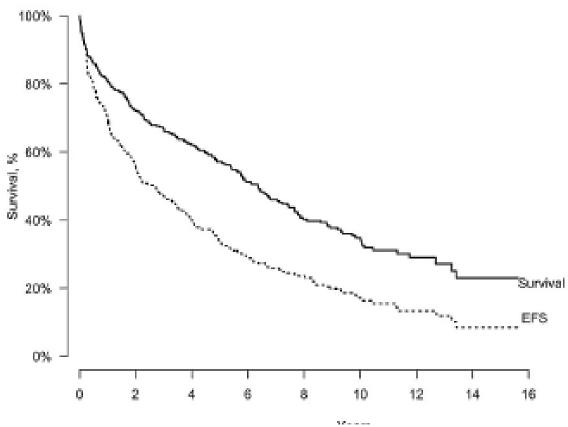
- Two died in CR •
- 4 patients relapsed •
- Progression free survival (PFS) = 3.8 years
 - Median overall survival (OS) = 5.1 years

Palladini et al. Blood 2007;110:787-788



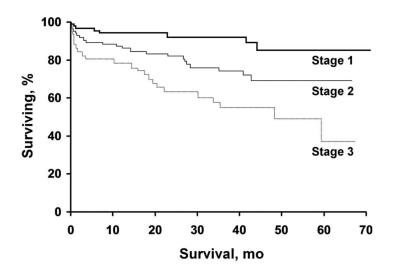
ORIGINAL ARTICLE

High-Dose Melphalan versus Melphalan plus Dexamethasone for AL Amyloidosis



Long term outcomes after ASCT

Ciberia et al. Blood 2014



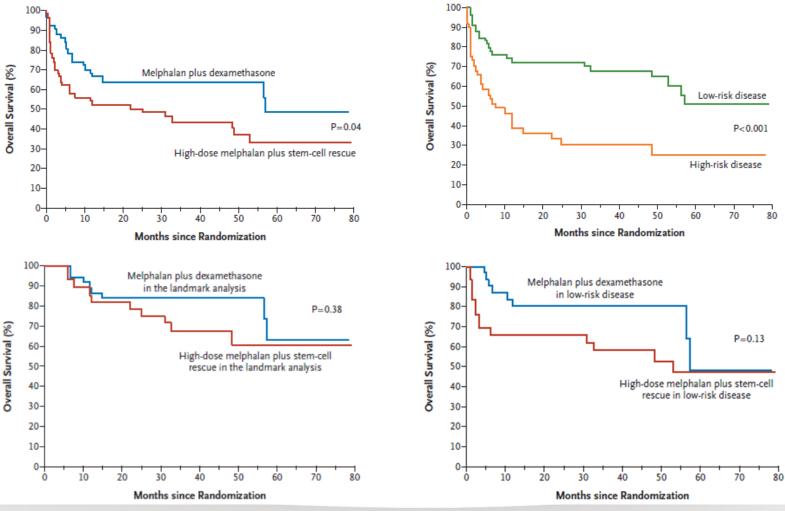
Impact of cTnT and NTproBNP on survival of patients undergoing SCT

Table I. Day-100 survival rate.

	Troponin T level \geq 0.06 µg/L $(n=40)$		Troponin T level <0.06 μg/L (n = 231)		Total patients $(N=271)$	
Patients	No.	%	No.	%	No.	%
Died before day 100*	11	28	16	7	27	10
Alive on or after day 100	29	72	215	93	244	90

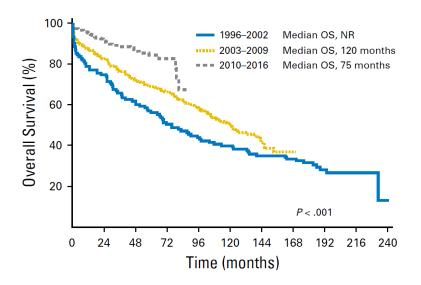
 $[\]star P < 0.001$.

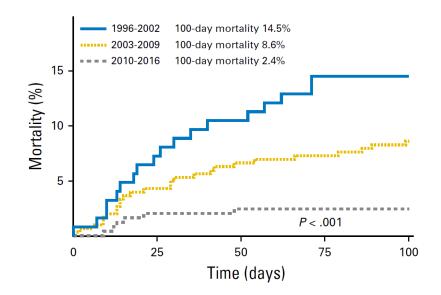
Gertz et al. Leukemia & Lymphoma 2008 Gertz et al. Leukemia & Lymphoma 2010



ORIGINAL ARTICLE

High-Dose Melphalan versus Melphalan plus Dexamethasone for AL Amyloidosis

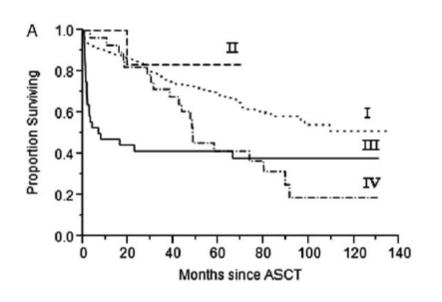




Stem Cell Transplantation for Light Chain Amyloidosis: Decreased Early Mortality Over Time

M Hasib Sidiqi, Mohammed A. Aljama, Francis K. Buadi, Rahma M. Warsame, Martha Q. Lacy, Angela Dispenzieri, David Dingli, Wilson I. Gonsalves, Shaji Kumar, Prashant Kapoor, Taxiarchis Kourelis, William J. Hogan, and Morie A. Gertz

Sidiqi et al. JCO 2018

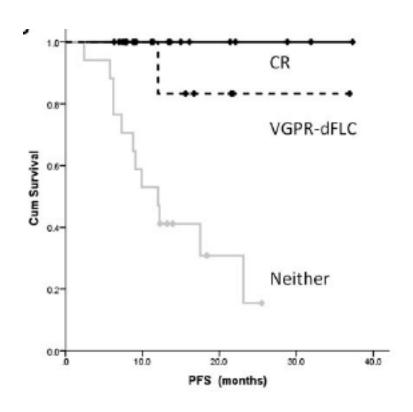


Timing of dialysis and its impact on overall survival

All patients

Patients with cardiac involvement

Leung et al. NDT 2015



2012 119: 4387-4390 Prepublished online February 13, 2012; doi:10.1182/blood-2011-10-388462

Cyclophosphamide, bortezomib, and dexamethasone therapy in AL amyloidosis is associated with high clonal response rates and prolonged progression-free survival

Christopher P. Venner, Thirusha Lane, Darren Foard, Lisa Rannigan, Simon D. J. Gibbs, Jennifer H. Pinney, Carol J. Whelan, Helen J. Lachmann, Julian D. Gillmore, Philip N. Hawkins and Ashutosh D. Wechalekar

Responses

Hem Res —

- 81.4%/CR 41.9%
- 82.9% by dFLC/VGPR 51.4% •

Organ responses —

- Cardiac 11%
 - Liver 40% •
 - Renal 29%
- 2 year OS 97.7% •
- Neuropathy 30% •

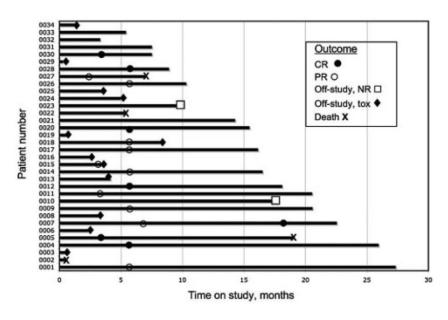
Venner et al. Blood 2012

A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis

Giovanni Palladini,¹ Sajitha Sachchithanantham,² Paolo Milani,¹ Julian Gillmore,² Andrea Foli,¹ Helen Lachmann,² Marco Basset,¹ Philip Hawkins,² Giampaolo Merlini,¹ and Ashutosh D. Wechalekar²

Response category	Stage I (30 patients)	Stage II (67 patients)	Stage IIIa (61 patients)	Stage IIIb (43 patients)
Overall response	23 (77%)	43 (64%)	42 (69%)	18 (42%)*
CR	10 (33%)	12 (18%)	14 (23%)	6 (14%)
VGPR	7 (23%)	18 (27%)	16 (26%)	4 (9%)
PR	6 (20%)	13 (19%)	12 (20%)	8 (19%)
Response category	Full bortezomib dose	Intermediate b	ortezomib dose	Low bortezomib dose
	(35 patients)	(82 patients)		(79 patients)
Overall response	29 (83%)	57 (69%)		42 (53%)†
CR	12 (34%)	20 (24%)		11 (14%)†
VGPR	7 (20%)	21 (26%)		17 (21%)
PR	10 (29%)	16 (19%)		14 (18%)
Response category	Full dexamethasone dose	Intermediate dex	camethasone dose	Low dexamethasone dos
	(58 patients)	(102 pa	atients)	(41 patients)
Overall response	45 (78%)	62 (61%)		20 (49%)†
CR	15 (26%)	21 (21%)		6 (15%)†
VGPR	17 (29%)	23 (22%)		5 (12%)†
PR	12 (21%)	18 (18%)		9 (22%)

Palladini et al. Blood 2015



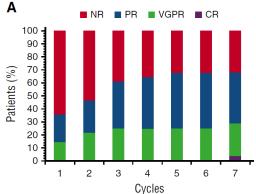
2007 109: 492-496

Prepublished online Sep 7, 2006; doi:10.1182/blood-2006-07-030544

Lenalidomide and dexamethasone in the treatment of AL amyloidosis: results of a phase 2 trial

Adverse event	Grades 1 and 2, no. (%)	Grades 3 and 4, no. (%)
Fatigue	15 (44)	12 (35)
Dizziness	20 (59)	4 (12)
Edema	17 (50)	0 (0)
Skin rash	14 (41)	6 (18)
Respiratory infection	13 (38)	4 (12)
Hypoalbuminemia	8 (24)	10 (29)
Increased creatinine	17 (50)	3 (9)
Myelosuppression	20 (59)	12 (35)
Thromboembolic events	0 (0)	3 (9)
Muscle cramps	22 (65)	1 (3)
Worsening of PS*	7 (21)	9 (26)

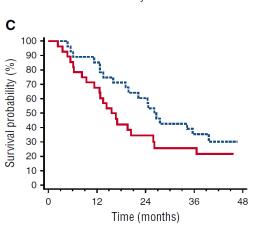
Sanchorawala et al. Blood 2007

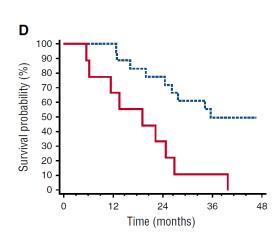


A phase 2 trial of pomalidomide and dexamethasone rescue treatment in patients with AL amyloidosis

Giovanni Palladini,^{1,2} Paolo Milani,^{1,2} Andrea Foli,^{1,2} Marco Basset,^{1,2} Francesca Russo,^{1,2} Stefano Perlini,^{3,4} and Giampaolo Merlini^{1,2}

¹Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ²Department of Molecular Medicine, University of Pavia, Pavia, Italy; ³Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and ⁴Department of Internal Medicine, University of Pavia, Italy; and Italy; and


Overall Response rate – 68%


VGPR or better – 29%

PFS - 16m

OS - 26m

Renal response – 17%

Palladini et al. Blood 2017

Daratumumab-based therapy in patients with heavily-pretreated AL amyloidosis

Jithma P. Abeykoon^{1,2} · Saurabh Zanwar ^{1,2} · Angela Dispenzieri^{1,2} · Morie A. Gertz^{1,2} · Nelson Leung ^{1,2,3} · Taxiarchis Kourelis^{1,2} · Wilson Gonsalves^{1,2} · Eli Muchtar ^{1,2} · David Dingli^{1,2} · Martha Q. Lacy^{1,2} · Suzanne R. Hayman^{1,2} · Francis Buadi^{1,2} · Rahma Warsame^{1,2} · Robert A. Kyle^{1,2} · Vincent Rajkumar^{1,2} · Shaji Kumar ^{1,2} · Prashant Kapoor^{1,2}

Treatment before DMT/DCT	Patients exposed (%)	% refractory	Refractory patients receiving DMT (n)	Refractory patients receiving DCT (<i>n</i>)
Bortezomib	91	45	10	10
Lenalidomide	57	29	5	8
Carfilzomib	16	7	0	3
Pomalidomide	20	7	0	3
Ixazomib	11	7	1	2
Melphalan (outside of ASCT)	23	7	3	0
High-dose Melphalan (ASCT)	52	0	-	_
Cyclophosphamide	75	32	8	6

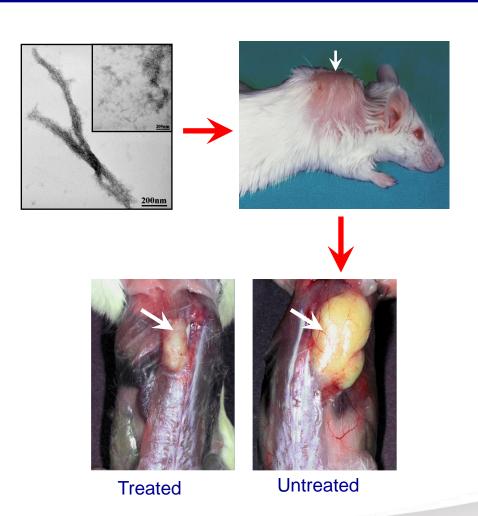
Abeykoon et al. Leukemia 2019

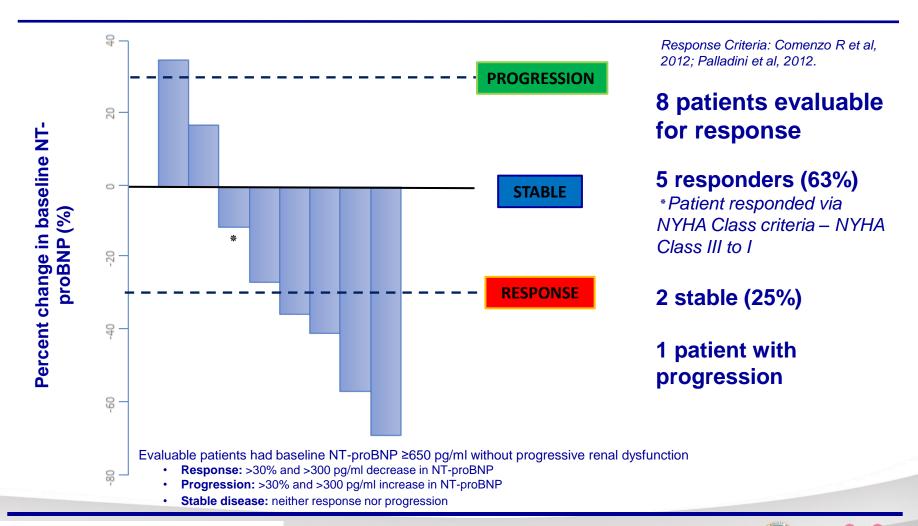
Daratumumab-based therapy in patients with heavily-pretreated AL amyloidosis

Jithma P. Abeykoon^{1,2} • Saurabh Zanwar ^{1,2} • Angela Dispenzieri^{1,2} • Morie A. Gertz^{1,2} • Nelson Leung ^{1,2,3} • Taxiarchis Kourelis^{1,2} • Wilson Gonsalves^{1,2} • Eli Muchtar ^{1,2} • David Dingli^{1,2} • Martha Q. Lacy^{1,2} • Suzanne R. Hayman^{1,2} • Francis Buadi^{1,2} • Rahma Warsame^{1,2} • Robert A. Kyle^{1,2} • Vincent Rajkumar^{1,2} • Shaji Kumar ^{1,2} • Prashant Kapoor^{1,2}

	Entire cohort, $n = 44^a$	DMT, $n = 22^{b}$	DCT, $n = 22^{c,d,e}$
Prior lines of therapy, <i>n</i> (range)	3 (1–8)	3 (1–5)	3 (1–8)
ORR ^a , n (%)	25 (83)	11 (78)	14 (88)
CR ^a , n (%)	5 (17)	2 (14)	3 (19)
VGPR ^a , n (%)	19 (63)	9 (64)	10 (63)
PR ^a , n (%)	1 (3)	0	1 (6)
Time to 1 st / best response, months (95% CI) ^a	2.2 (1.7–4.8) / 5.7 (3.4–7.7)	2.6 (1.7–6.2) / 6.2 (2.2–8.9)	1.9 (0.9–3.4)/ 5.7 (2.3–12.2)
Median follow-up, months (95% CI)	10.2 (8.0–13.1)	7.7 (5.6–10.4)	13.1 (9.1–17.8)
PFS, months (95% CI)	NR (15.5-NR)	NR (13.2-NR)	NR (15.5-NR)
PFS for 6 and 10 months (% of patients)	97% and 89%	100%,100%	100%, 83%
OS, months (95% CI)	NR (NR-NR)	NR (13-NR)	NR (15.5-NR)
OS for 10 months (% of patients)	94%	100%	89%
EFS, months (95% CI)	15.5 (12-NR)	13.2 (8.1–15.0)	NR (11.3-NR)
EFS for 6 and 10 months (% of patients)	86% and 76%	80% and 56%	90% and 81%

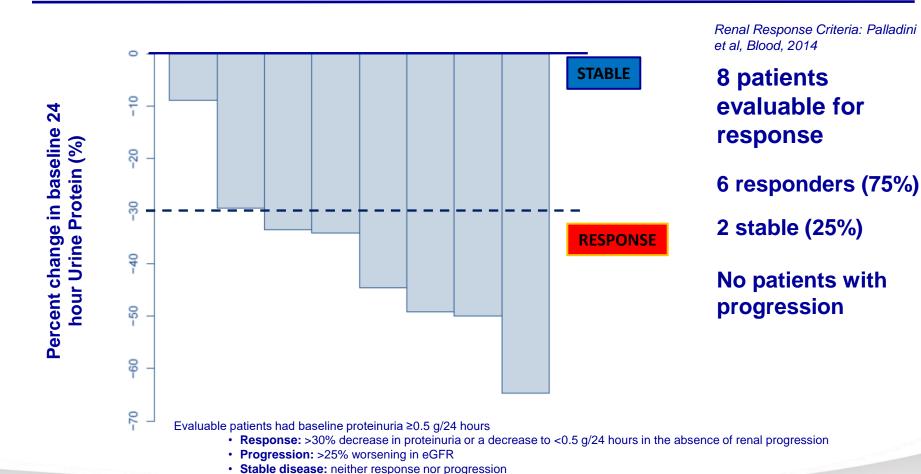
Abeykoon et al. Leukemia 2019





Immunotherapy Using the 11-1F4 mAb

The 11-1F4 mAb expedites the dissolution of human AL λ and κ amyloidomas in mice


Best Cardiac Response After Treatment with mAb 11-1F4 in Phase 1a and 1b

Best Renal Response After Treatment with mAb 11-1F4 in Phase 1a and 1b

Questions

Scottsdale, Arizona

Rochester, Minnesota

Jacksonville, Florida

17th International Congress of Nephrology, Dialysis, and Transplantation